高二簡(jiǎn)單的數(shù)學(xué)教案

| 新華0

好的教案應(yīng)該包括合理的教學(xué)過(guò)程,包括導(dǎo)入新課、講授新課、鞏固練習(xí)、課堂小結(jié)、布置作業(yè)等環(huán)節(jié)。如何寫(xiě)出優(yōu)秀的高二簡(jiǎn)單的數(shù)學(xué)教案?下面給大家分享一些高二簡(jiǎn)單的數(shù)學(xué)教案,希望對(duì)大家有所幫助。

高二簡(jiǎn)單的數(shù)學(xué)教案篇1

一、教材分析

本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)常考一些解答題。因此,正弦定理和余弦定理的知識(shí)非常重要。

根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

認(rèn)知目標(biāo):通過(guò)創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會(huì)運(yùn)用正弦定理解決兩類基本的解三角形問(wèn)題。

能力目標(biāo):引導(dǎo)學(xué)生通過(guò)觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維能力,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題。

情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。

教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。教學(xué)難點(diǎn):已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

二、教法

根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

三、學(xué)法

指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

四、教學(xué)過(guò)程

(一)創(chuàng)設(shè)情境(3分鐘)

“興趣是的老師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題,

(二)猜想—推理—證明(15分鐘)

激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。提問(wèn):那結(jié)論對(duì)任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

在三角形中,角與所對(duì)的邊滿足關(guān)系

注意:

1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的`理論證明。

2.鼓勵(lì)學(xué)生通過(guò)作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來(lái),繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

(三)總結(jié)--應(yīng)用(3分鐘)

1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問(wèn)題。

2.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

高二簡(jiǎn)單的數(shù)學(xué)教案篇2

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象、恰當(dāng)?shù)乩枚x__題,許多時(shí)候能以簡(jiǎn)馭繁、因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

三、設(shè)計(jì)思想

由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情、在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率、

四、教學(xué)目標(biāo)

1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用__解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

2、通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、

五、教學(xué)重點(diǎn)與難點(diǎn):

教學(xué)重點(diǎn)

1、對(duì)圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學(xué)難點(diǎn):

巧用圓錐曲線定義__

高二簡(jiǎn)單的數(shù)學(xué)教案篇3

知識(shí)結(jié)構(gòu)

重點(diǎn)與難點(diǎn)分析:

本節(jié)課教學(xué)方法主要是“自學(xué)輔導(dǎo)與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識(shí)結(jié)構(gòu)完整、知識(shí)理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問(wèn)題、動(dòng)手試驗(yàn)、發(fā)現(xiàn)規(guī)律、做出歸納。讓學(xué)生直接參加課堂活動(dòng),將教與學(xué)融為一體。具體說(shuō)明如下:

(1)由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教

本節(jié)課開(kāi)始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開(kāi)討論,初步形成意見(jiàn),然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。

(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力

本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。

公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。

綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書(shū)寫(xiě)。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。

教法建議:

由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教”

本節(jié)課開(kāi)始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開(kāi)討論,初步形成意見(jiàn),然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。

(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力

本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。

公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。

綜合練習(xí)的.多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。

這里注意兩點(diǎn):

一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書(shū)寫(xiě)。

二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。

高二簡(jiǎn)單的數(shù)學(xué)教案篇4

(一)、課題引入:

教師創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生的探究__,引導(dǎo)學(xué)生提出接下去要研究的問(wèn)題。

(二)、新課教學(xué):

1、針對(duì)上面提出的問(wèn)題,設(shè)計(jì)學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過(guò)動(dòng)手探索有關(guān)的知識(shí),并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問(wèn)題。

2、組織學(xué)生進(jìn)行新問(wèn)題的實(shí)驗(yàn)方法設(shè)計(jì)—這時(shí)在設(shè)計(jì)上是有對(duì)比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過(guò)多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識(shí)的結(jié)構(gòu)。

(三)、實(shí)施反饋:

1、課堂反饋,遷移知識(shí)(遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問(wèn)題,實(shí)現(xiàn)知識(shí)的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

2、課后反饋,延續(xù)創(chuàng)新。通過(guò)課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

板書(shū)設(shè)計(jì):

在教學(xué)中我把黑板分為三部分,把知識(shí)要點(diǎn)寫(xiě)在左側(cè),中間知識(shí)推導(dǎo)過(guò)程,右邊實(shí)例應(yīng)用。

說(shuō)課綜述:

以上是我對(duì)《__x》這節(jié)教材的認(rèn)識(shí)和對(duì)教學(xué)過(guò)程的設(shè)計(jì)。在整個(gè)課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過(guò)的知識(shí),并把它運(yùn)用到對(duì)的認(rèn)識(shí),使學(xué)生的認(rèn)知活動(dòng)逐步深化,既掌握了知識(shí),又學(xué)會(huì)了方法。

總之,對(duì)課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問(wèn)題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對(duì)學(xué)生創(chuàng)新意識(shí)的培養(yǎng)。

高二簡(jiǎn)單的數(shù)學(xué)教案篇5

一、說(shuō)教材:

1、地位、作用和特點(diǎn):

《__》是高中數(shù)學(xué)課本第__冊(cè)(x修)的第__章“__”的第__節(jié)內(nèi)容。

本節(jié)是在學(xué)習(xí)了之后編排的。通過(guò)本節(jié)課的學(xué)習(xí),既可以對(duì)的知識(shí)進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí)打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《__》的知識(shí)與我們?nèi)粘I?、生產(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。本節(jié)的特點(diǎn)之一是__;特點(diǎn)之二是:__。

教學(xué)目標(biāo):

根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識(shí)基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

(1)知識(shí)目標(biāo):A、B、C

(2)能力目標(biāo):A、B、C

(3)德育目標(biāo):A、B

教學(xué)的重點(diǎn)和難點(diǎn):

(1)教學(xué)重點(diǎn):

(2)教學(xué)難點(diǎn):

二、說(shuō)教法:

基于上面的教材分析,我根據(jù)自己對(duì)研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識(shí),結(jié)合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng)設(shè)問(wèn)題情景,充分調(diào)動(dòng)學(xué)生求知欲,并以此來(lái)激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來(lái)統(tǒng)一組織運(yùn)用于教學(xué)過(guò)程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個(gè)教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)__真正成為學(xué)生的學(xué)習(xí)過(guò)程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識(shí)的過(guò)程中,領(lǐng)會(huì)常見(jiàn)數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問(wèn)題時(shí)留給學(xué)生充分的時(shí)間,以利于開(kāi)放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時(shí)能夠做到葉老師所說(shuō)“教就是為了不教”。因此,擬對(duì)本節(jié)課設(shè)計(jì)如下教學(xué)程序:

導(dǎo)入新課新課教學(xué)反饋發(fā)展

三、說(shuō)學(xué)法:

學(xué)生學(xué)習(xí)的過(guò)程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運(yùn)用知識(shí)和獲得學(xué)習(xí)能力的過(guò)程,因此,我覺(jué)得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時(shí),應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過(guò)程中進(jìn)行的,是通過(guò)優(yōu)化教學(xué)程序來(lái)增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導(dǎo)。

1、培養(yǎng)學(xué)生學(xué)會(huì)通過(guò)自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識(shí),使學(xué)生在探索研究過(guò)程中分析、歸納、推理能力得到提高。

本節(jié)教師通過(guò)列舉具體事例來(lái)進(jìn)行分析,歸納出,并依據(jù)此知識(shí)與具體事例結(jié)合、推導(dǎo)出,這正是一個(gè)分析和推理的全過(guò)程。

2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過(guò)程。主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問(wèn)題情境,讓學(xué)生在探索中體會(huì)科學(xué)方法,如在講授時(shí),可通過(guò)演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過(guò)抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來(lái)的特點(diǎn)。

3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問(wèn)題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵(lì),不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結(jié)和推廣。

4、在指導(dǎo)學(xué)生解決問(wèn)題時(shí),引導(dǎo)學(xué)生通過(guò)比較、猜測(cè)、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問(wèn)題方法,從而克服思維定勢(shì)的消極影響,促進(jìn)知識(shí)的正向遷移。如教師引導(dǎo)學(xué)生對(duì)比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識(shí)遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過(guò)程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過(guò)現(xiàn)象發(fā)掘知識(shí)內(nèi)在本質(zhì)的能力。

四、教學(xué)過(guò)程:

(一)、課題引入:

教師創(chuàng)設(shè)問(wèn)題情景(創(chuàng)設(shè)情景:A、教師演示實(shí)驗(yàn)。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例。C、講述數(shù)學(xué)科學(xué)的有關(guān)情況。)激發(fā)學(xué)生的探究__,引導(dǎo)學(xué)生提出接下去要研究的問(wèn)題。

(二)、新課教學(xué):

1、針對(duì)上面提出的問(wèn)題,設(shè)計(jì)學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過(guò)動(dòng)手探索有關(guān)的知識(shí),并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問(wèn)題。

2、組織學(xué)生進(jìn)行新問(wèn)題的實(shí)驗(yàn)方法設(shè)計(jì)—這時(shí)在設(shè)計(jì)上是有對(duì)比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過(guò)多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識(shí)的結(jié)構(gòu)。

(三)、實(shí)施反饋:

1、課堂反饋,遷移知識(shí)(遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問(wèn)題,實(shí)現(xiàn)知識(shí)的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

2、課后反饋,延續(xù)創(chuàng)新。通過(guò)課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

五、板書(shū)設(shè)計(jì):

在教學(xué)中我把黑板分為三部分,把知識(shí)要點(diǎn)寫(xiě)在左側(cè),中間知識(shí)推導(dǎo)過(guò)程,右邊實(shí)例應(yīng)用。

六、說(shuō)課綜述:

以上是我對(duì)《__》這節(jié)教材的認(rèn)識(shí)和對(duì)教學(xué)過(guò)程的設(shè)計(jì)。在整個(gè)課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過(guò)的知識(shí),并把它運(yùn)用到對(duì)的認(rèn)識(shí),使學(xué)生的認(rèn)知活動(dòng)逐步深化,既掌握了知識(shí),又學(xué)會(huì)了方法。

總之,對(duì)課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問(wèn)題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對(duì)學(xué)生創(chuàng)新意識(shí)的培養(yǎng)。

高二簡(jiǎn)單的數(shù)學(xué)教案篇6

一、教學(xué)目標(biāo)

(1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

(3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;

(4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;

(5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.

二、教學(xué)重點(diǎn)難點(diǎn):

重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.

三、教學(xué)過(guò)程

1.新課導(dǎo)入

在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).

初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)

(從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)

學(xué)生舉例:平行四邊形的對(duì)角線互相平.……(1)

兩直線平行,同位角相等.…………(2)

教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)

(同學(xué)議論結(jié)果,答案是肯定的.)

教師提問(wèn):什么是命題?

(學(xué)生進(jìn)行回憶、思考.)

概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.

(教師肯定了同學(xué)的回答,并作板書(shū).)

由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

(教師利用投影片,和學(xué)生討論以下問(wèn)題.)

例1判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.

初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).

2.講授新課

大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?

(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)

(1)什么叫做命題?

可以判斷真假的語(yǔ)句叫做命題.

判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如x2-5x+6=0

中含有變量,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

命題可分為簡(jiǎn)單命題和復(fù)合命題.

不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

(4)命題的表示:用p,q,r,s,……來(lái)表示.

(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)

我們接觸的復(fù)合命題一般有“p或q”“p且q”、“非p”、“若p則q”等形式.

給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

對(duì)于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.

在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.

3.鞏固新課

例2判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.

(1)12>5;

(2)0.5非整數(shù);

(3)內(nèi)錯(cuò)角相等,兩直線平行;

(4)菱形的對(duì)角線互相垂直且平分;

(5)平行線不相交;

(6)若ab=0,則a=0.

(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

例3寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).

分析:“等于”的否定語(yǔ)是“不等于”;

“大于”的否定語(yǔ)是“小于或者等于”;

“是”的否定語(yǔ)是“不是”;

“都是”的否定語(yǔ)是“不都是”;

“至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;

“至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;

“至多有n個(gè)”的否定語(yǔ)是“至少有n+1個(gè)”.

(如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)

置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開(kāi).)

4.課堂練習(xí):第26頁(yè)練習(xí)1,2.

5.課外作業(yè):第29頁(yè)習(xí)題1.61,2.

高二簡(jiǎn)單的數(shù)學(xué)教案篇7

教學(xué)目標(biāo)

(一)教學(xué)知識(shí)點(diǎn)

1.經(jīng)歷探索積的乘方的運(yùn)算法則的過(guò)程,進(jìn)一步體會(huì)冪的意義。

2.理解積的乘方運(yùn)算法則,能解決一些實(shí)際問(wèn)題。

(二)能力訓(xùn)練要求

1.在探究積的乘方的運(yùn)算法則的過(guò)程中,發(fā)展推理能力和有條理的表達(dá)能力。

2.學(xué)習(xí)積的乘方的運(yùn)算法則,提高解決問(wèn)題的能力。

(三)情感與價(jià)值觀要求

在發(fā)展推理能力和有條理的語(yǔ)言、符號(hào)表達(dá)能力的同時(shí),進(jìn)一步體會(huì)學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)習(xí)數(shù)學(xué)的信心,感受數(shù)學(xué)的簡(jiǎn)潔美。

教學(xué)重點(diǎn)

積的乘方運(yùn)算法則及其應(yīng)用。

教學(xué)難點(diǎn)

冪的運(yùn)算法則的靈活運(yùn)用。

教學(xué)方法

自學(xué)—引導(dǎo)相結(jié)合的方法。

同底數(shù)冪的乘法、冪的乘方、積的乘方成一個(gè)體系,研究方法類同,有前兩節(jié)課做基礎(chǔ),本節(jié)課可放手讓學(xué)生自學(xué),教師引導(dǎo)學(xué)生總結(jié),從而讓學(xué)生真正理解冪的運(yùn)算方法,能解決一些實(shí)際問(wèn)題。

教具準(zhǔn)備

投影片.

教學(xué)過(guò)程

Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境

[師]還是就上節(jié)課開(kāi)課提出的問(wèn)題:若已知一個(gè)正方體的棱長(zhǎng)為1.1×103cm,你能計(jì)算出它的體積是多少嗎?

[生]它的體積應(yīng)是V=(1.1×103)3cm3。

[師]這個(gè)結(jié)果是冪的乘方形式嗎?

[生]不是,底數(shù)是1.1和103的乘積,雖然103是冪,但總體來(lái)看,我認(rèn)為應(yīng)是積的乘方才有道理。

[師]你分析得很有道理,積的乘方如何運(yùn)算呢?能不能找到一個(gè)運(yùn)算法則?有前兩節(jié)課的探究經(jīng)驗(yàn),老師想請(qǐng)同學(xué)們自己探索,發(fā)現(xiàn)其中的奧秒。

Ⅱ.導(dǎo)入新課

老師列出自學(xué)提綱,引導(dǎo)學(xué)生自主探究、討論、嘗試、歸納。

出示投影片

1.填空,看看運(yùn)算過(guò)程用到哪些運(yùn)算律,從運(yùn)算結(jié)果看能發(fā)現(xiàn)什么規(guī)律?

(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

(2)(ab)3=______=_______=a()b()

(3)(ab)n=______=______=a()b()(n是正整數(shù))

2.把你發(fā)現(xiàn)的規(guī)律用文字語(yǔ)言表述,再用符號(hào)語(yǔ)言表達(dá)。

3.解決前面提到的正方體體積計(jì)算問(wèn)題。

4.積的乘方的運(yùn)算法則能否進(jìn)行逆運(yùn)算呢?請(qǐng)驗(yàn)證你的想法。

5.完成課本P170例3。

學(xué)生探究的經(jīng)過(guò):

1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結(jié)合律;第③步是用同底數(shù)冪的乘法法則。同樣的方法可以算出(2)、(3)題。

高二簡(jiǎn)單的數(shù)學(xué)教案篇8

一、教材分析

【教材地位及作用】

基本不等式又稱為均值不等式,選自北京師范大學(xué)出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對(duì)象為高二學(xué)生,本節(jié)課為第一課時(shí),重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和掌握了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問(wèn)題奠定基礎(chǔ)。因此基本不等式在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。

【教學(xué)目標(biāo)】

依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):

知識(shí)與技能目標(biāo):理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;

過(guò)程與方法目標(biāo):通過(guò)探究基本不等式,使學(xué)生體會(huì)知識(shí)的形成過(guò)程,培養(yǎng)分析、解決問(wèn)題的能力;

情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。

【教學(xué)重難點(diǎn)】

重點(diǎn):理解掌握基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義。

難點(diǎn):利用基本不等式推導(dǎo)不等式.

關(guān)鍵是對(duì)基本不等式的理解掌握.

二、教法分析

本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開(kāi),從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率.

三、學(xué)法指導(dǎo)

新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,倡導(dǎo)積極主動(dòng),勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過(guò)讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識(shí),使學(xué)生成為學(xué)習(xí)的主人。

四、教學(xué)過(guò)程

教學(xué)過(guò)程設(shè)計(jì)以問(wèn)題為中心,以探究解決問(wèn)題的方法為主線展開(kāi)。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。

具體過(guò)程安排如下:

(一)基本不等式的教學(xué)設(shè)計(jì)創(chuàng)設(shè)情景,提出問(wèn)題

設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:

上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。

[問(wèn)題1]請(qǐng)觀察會(huì)標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們?cè)诿娣e上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組討論)

(二)探究問(wèn)題,抽象歸納

基本不等式的教學(xué)設(shè)計(jì)1.探究圖形中的不等關(guān)系

形的角度----(利用多媒體展示會(huì)標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個(gè)直角三角形的面積之和小于或等于正方形的面積.)

數(shù)的角度

[問(wèn)題2]若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?

學(xué)生討論結(jié)果:。

[問(wèn)題3]大家看,這個(gè)圖形里還真有點(diǎn)奧妙。我們從圖中找到了一個(gè)不等式。這里a、b的取值有沒(méi)有什么限制條件?不等式中的等號(hào)什么時(shí)候成立呢?(師生共同探索)

咱們?cè)倏匆豢磮D形的變化,(教師演示)

(學(xué)生發(fā)現(xiàn))當(dāng)a=b四個(gè)直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。

設(shè)計(jì)意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計(jì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。

2.抽象歸納:

一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

[問(wèn)題4]你能給出它的證明嗎?

學(xué)生在黑板上板書(shū)。

[問(wèn)題5]特別地,當(dāng)時(shí),在不等式中,以、分別代替a、b,得到什么?

學(xué)生歸納得出。

設(shè)計(jì)意圖:類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).

【歸納總結(jié)】

如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。

3.探究基本不等式證明方法:

[問(wèn)題6]如何證明基本不等式?

設(shè)計(jì)意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。

方法一:作差比較或由基本不等式的教學(xué)設(shè)計(jì)展開(kāi)證明。

方法二:分析法

要證

只要證2

要證,只要證2

要證,只要證

顯然,是成立的。當(dāng)且僅當(dāng)a=b時(shí),中的等號(hào)成立。

4.理解升華

1)文字語(yǔ)言敘述:

兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

2)符號(hào)語(yǔ)言敘述:

若,則有,當(dāng)且僅當(dāng)a=b時(shí),。

[問(wèn)題7]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))

“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:

當(dāng)a=b時(shí),取等號(hào),即;

僅當(dāng)a=b時(shí),取等號(hào),即。

3)探究基本不等式的幾何意義:

基本不等式的教學(xué)設(shè)計(jì)借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋,通過(guò)數(shù)形結(jié)合,賦予不等式幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號(hào)成立的條件。

如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),

CD⊥AB,AC=a,CB=b,

[問(wèn)題8]你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?

(教師演示,學(xué)生直觀感覺(jué))

易證RtACDRtDCB,那么CD2=CA·CB

即CD=.

這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立.

因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高.

4)聯(lián)想數(shù)列的知識(shí)理解基本不等式

從形的角度來(lái)看,基本不等式具有特定的幾何意義;從數(shù)的角度來(lái)看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系.

[問(wèn)題9]回憶一下你所學(xué)的知識(shí)中,有哪些地方出現(xiàn)過(guò)“和”與“積”的結(jié)構(gòu)?

歸納得出:

均值不等式的代數(shù)解釋為:兩個(gè)正數(shù)的等差中項(xiàng)不小它們的等比中項(xiàng).

基本不等式的教學(xué)設(shè)計(jì)(四)體會(huì)新知,遷移應(yīng)用

例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計(jì)

(2)如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),設(shè)AC=a,CB=b,

,過(guò)作交于,你能利用這個(gè)圖形得出這個(gè)不等式的一種幾何解釋嗎?

設(shè)計(jì)意圖:以上例題是根據(jù)基本不等式的使用條件中的難點(diǎn)和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識(shí),進(jìn)一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時(shí),等號(hào)成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。

(五)演練反饋,鞏固深化

公式應(yīng)用之一:

1.試判斷與與2的大小關(guān)系?

問(wèn)題:如果將條件“x>0”去掉,上述結(jié)論是否仍然成立?

2.試判斷與7的大小關(guān)系?

公式應(yīng)用之二:

設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問(wèn)題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中

(1)用一個(gè)兩臂長(zhǎng)短有差異的天平稱一樣物品,有人說(shuō)只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺(jué)得這種做法比實(shí)際重量輕了還是重了?

(2)甲、乙兩商場(chǎng)對(duì)單價(jià)相同的同類產(chǎn)品進(jìn)行促銷(xiāo).甲商場(chǎng)采取的促銷(xiāo)方式是在原價(jià)p折的基礎(chǔ)上再打q折;乙商場(chǎng)的促銷(xiāo)方式則是兩次都打折.對(duì)顧客而言,哪種打折方式更合算?(0≠q)

(五)反思總結(jié),整合新知:

通過(guò)本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問(wèn)題需要請(qǐng)教?

設(shè)計(jì)意圖:通過(guò)反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.從各種角度對(duì)均值不等式進(jìn)行總結(jié),目的是為了讓學(xué)生掌握本節(jié)課的重點(diǎn),突破難點(diǎn)

老師根據(jù)情況完善如下:

知識(shí)要點(diǎn):

(1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征

(2)基本不等式在幾何、代數(shù)及實(shí)際應(yīng)用三方面的意義

思想方法技巧:

(1)數(shù)形結(jié)合思想、“整體與局部”

(2)歸納與類比思想

(3)換元法、比較法、分析法

(七)布置作業(yè),更上一層

1.閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計(jì)

2.書(shū)面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計(jì)

3.思考題:類比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會(huì)有怎樣的不等式?

設(shè)計(jì)意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時(shí)考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。

五、評(píng)價(jià)分析

1.在建立新知的過(guò)程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識(shí)來(lái)分析問(wèn)題、解決問(wèn)題,以形成比較系統(tǒng)和完整的知識(shí)結(jié)構(gòu)。每個(gè)問(wèn)題在設(shè)計(jì)時(shí),充分考慮了學(xué)生的具體情況,力爭(zhēng)提問(wèn)準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問(wèn)持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價(jià)值,對(duì)知識(shí)的理解和掌握在不斷的思考和討論中完善和加深。

2.本節(jié)的教學(xué)中要求學(xué)生對(duì)基本不等式在數(shù)與形兩個(gè)方面都有比較充分的認(rèn)識(shí),特別強(qiáng)調(diào)數(shù)與形的統(tǒng)一,教學(xué)過(guò)程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對(duì)基本不等式得以深刻理解?!皵?shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠掌握并且會(huì)用的,只有學(xué)生通過(guò)實(shí)踐,意識(shí)到它的好處之后,學(xué)生才會(huì)在解決問(wèn)題時(shí)去嘗試使用,只有通過(guò)不斷的使用才能促進(jìn)學(xué)生對(duì)這種思想方法的再理解,從而達(dá)到掌握它的目的。

高二簡(jiǎn)單的數(shù)學(xué)教案篇9

Ⅰ.設(shè)置情境

(通過(guò)講評(píng)上一節(jié)課課后作業(yè)中出現(xiàn)的問(wèn)題,復(fù)習(xí)利用“三個(gè)二次”間的關(guān)系求解一元二次不等式的主要操作過(guò)程。)

上節(jié)課我們只討論了二次項(xiàng)系數(shù)的一元二次不等式的求解問(wèn)題??隙ㄓ型瑢W(xué)會(huì)問(wèn),那么二次項(xiàng)系數(shù)的一元二次不等式如何來(lái)求解?咱們班上有誰(shuí)能解答這個(gè)疑問(wèn)呢?

Ⅱ.探索研究

(學(xué)生議論紛紛.有的說(shuō)仍然利用二次函數(shù)的圖像,有的說(shuō)將二次項(xiàng)的系數(shù)變?yōu)檎龜?shù)后再求解,…….教師分別請(qǐng)持上述見(jiàn)解的學(xué)生代表進(jìn)一步說(shuō)明各自的見(jiàn)解.)

生甲:只要將課本第39頁(yè)上表中的二次函數(shù)圖像次依關(guān)于x軸翻轉(zhuǎn)變成開(kāi)口向下的拋物線,再根據(jù)可得的圖像便可求得二次項(xiàng)系數(shù)的一元二次不等式的解集.

生乙:我覺(jué)得先在不等式兩邊同乘以-1將二次項(xiàng)系數(shù)變?yōu)檎龜?shù)后直接運(yùn)用上節(jié)課所學(xué)的方法求解就可以了.

師:首先,這兩種見(jiàn)解都是合乎邏輯和可行的.不過(guò)按前一見(jiàn)解來(lái)操作的話,同學(xué)們則需再記住一張類似于第39頁(yè)上的表格中的各結(jié)論.這不但加重了記憶負(fù)擔(dān),而且兩表中的結(jié)論容易搞混導(dǎo)致錯(cuò)誤.而按后一種見(jiàn)解來(lái)操作時(shí)則不存在這個(gè)問(wèn)題,請(qǐng)同學(xué)們閱讀第19頁(yè)例4.

(待學(xué)生閱讀完畢,教師再簡(jiǎn)要講解一遍.)

[知識(shí)運(yùn)用與解題研究]

由此例可知,對(duì)于二次項(xiàng)系數(shù)的一元二次不等式是將其通過(guò)同解變形化為的一元二次不等式來(lái)求解的,因此只要掌握了上一節(jié)課所學(xué)過(guò)的方法。我們就能求

解任意一個(gè)一元二次不等式了,請(qǐng)同學(xué)們求解以下兩不等式.(調(diào)兩位程度中等的學(xué)生演板)

(1)(2)

(分別為課本P21習(xí)題1.5中1大題(2)、(4)兩小題.教師講評(píng)兩位同學(xué)的解答,注意糾正表述方面存在的問(wèn)題.)

訓(xùn)練二可化為一元一次不等式組來(lái)求解的不等式.

目前我們熟悉了利用“三個(gè)二次”間的關(guān)系求解一元二次不等式的方法雖然對(duì)任意一元二次不等式都適用,但具體操作起來(lái)還是讓我們感到有點(diǎn)麻煩.故在求解形如(或)的一元二次不等式時(shí)則根據(jù)(有理數(shù))乘(除)運(yùn)算的“符號(hào)法則”化為同學(xué)們更加熟悉的一元一次不等式組來(lái)求解.現(xiàn)在清同學(xué)們閱讀課本P20上關(guān)于不等式求解的內(nèi)容并思考:原不等式的解集為什么是兩個(gè)一次不等式組解集的并集?(待學(xué)生閱讀完畢,請(qǐng)一程度較好,表達(dá)能力較強(qiáng)的學(xué)生回答該問(wèn)題.)

【答】因?yàn)闈M足不等式組或的x都能使原不等式成立,且反過(guò)來(lái)也是對(duì)的,故原不等式的解集是兩個(gè)一元二次不等式組解集的并集.

這個(gè)回答說(shuō)明了原不等式的解集A與兩個(gè)一次不等式組解集的并集B是互為子集的關(guān)系,故它們必相等,現(xiàn)在請(qǐng)同學(xué)們求解以下各不等式.(調(diào)三位程度各異的學(xué)生演板.教師巡視,重點(diǎn)關(guān)注程度較差的學(xué)生).

(1)[P20練習(xí)中第1大題]

(2)[P20練習(xí)中第1大題]

(3)[P20練習(xí)中第2大題]

(老師扼要講評(píng)三位同學(xué)的解答.尤其要注意糾正表述方面存在的問(wèn)題.然后講解P21例5).

例5解不等式

因?yàn)?有理數(shù))積與商運(yùn)算的“符號(hào)法則”是一致的,故求解此類不等式時(shí),也可像求解(或)之類的不等式一樣,將其化為一元一次不等式組來(lái)求解。具體解答過(guò)程如下。

解:(略)

現(xiàn)在請(qǐng)同學(xué)們完成課本P21練習(xí)中第3、4兩大題。

(等學(xué)生完成后教師給出答案,如有學(xué)生對(duì)不上答案,由其本人追查原因,自行糾正。)

[訓(xùn)練三]用“符號(hào)法則”解不等式的復(fù)式訓(xùn)練。

(通過(guò)多媒體或其他載體給出下列各題)

1.不等式與的解集相同此說(shuō)法對(duì)嗎?為什么[補(bǔ)充]

2.解下列不等式:

(1)[課本P22第8大題(2)小題]

(2)[補(bǔ)充]

(3)[課本P43第4大題(1)小題]

(4)[課本P43第5大題(1)小題]

(5)[補(bǔ)充]

(每題均先由學(xué)生說(shuō)出解題思路,教師扼要板書(shū)求解過(guò)程)

參考答案:

1.不對(duì)。同時(shí)前者無(wú)意義而后者卻能成立,所以它們的解集是不同的。

2.(1)

(2)原不等式可化為:,即

解集為。

(3)原不等式可化為

解集為

(4)原不等式可化為或

解集為

(5)原不等式可化為:或解集為

Ⅲ.總結(jié)提煉

這節(jié)課我們重點(diǎn)講解了利用(有理數(shù))乘除法的符號(hào)法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對(duì)符合上述形狀的高次不等式也是有效的,同學(xué)們應(yīng)掌握好這一方法。

(五)布置作業(yè)

(P22.2(2)、(4);4;5;6。)

(六)板書(shū)設(shè)計(jì)

高二簡(jiǎn)單的數(shù)學(xué)教案篇10

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

1、知識(shí)與技能

(1)推廣角的概念、引入大于角和負(fù)角;(2)理解并掌握正角、負(fù)角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹(shù)立運(yùn)動(dòng)變化觀點(diǎn),深刻理解推廣后的角的概念;(6)揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣.(7)創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí).

2、過(guò)程與方法

通過(guò)創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時(shí)針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個(gè)終邊相同的角,畫(huà)出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí).

3、情態(tài)與價(jià)值

通過(guò)本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)角的概念有了一個(gè)新的認(rèn)識(shí),即有正角、負(fù)角和零角之分.角的概念推廣以后,知道角之間的關(guān)系.理解掌握終邊相同角的表示方法,學(xué)會(huì)運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)認(rèn)識(shí)事物.

教學(xué)重難點(diǎn)

重點(diǎn):理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法.

難點(diǎn):終邊相同的角的表示.

教學(xué)工具

投影儀等.

教學(xué)過(guò)程

【創(chuàng)設(shè)情境】

思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了1.25

小時(shí),你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時(shí)間校準(zhǔn)以后,分針轉(zhuǎn)了多少度?

[取出一個(gè)鐘表,實(shí)際操作]我們發(fā)現(xiàn),校正過(guò)程中分針需要正向或反向旋轉(zhuǎn),有時(shí)轉(zhuǎn)不到一周,有時(shí)轉(zhuǎn)一周以上,這就是說(shuō)角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角.

【探究新知】

1.初中時(shí),我們已學(xué)習(xí)了角的概念,它是如何定義的呢?

[展示投影]角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形.如圖1.1-1,一條射線由原來(lái)的位置,繞著它的端點(diǎn)o按逆時(shí)針?lè)较蛐D(zhuǎn)到終止位置OB,就形成角a.旋轉(zhuǎn)開(kāi)始時(shí)的射線叫做角的始邊,OB叫終邊,射線的端點(diǎn)o叫做叫a的頂點(diǎn).

2.如上述情境中所說(shuō)的校準(zhǔn)時(shí)鐘問(wèn)題以及在體操比賽中我們經(jīng)常聽(tīng)到這樣的術(shù)語(yǔ):“轉(zhuǎn)體”(即轉(zhuǎn)體2周),“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,都是遇到大于的角以及按不同方向旋轉(zhuǎn)而成的角.同學(xué)們思考一下:能否再舉出幾個(gè)現(xiàn)實(shí)生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,這些說(shuō)明了什么問(wèn)題?又該如何區(qū)分和表示這些角呢?

[展示課件]如自行車(chē)車(chē)輪、螺絲扳手等按不同方向旋轉(zhuǎn)時(shí)成不同的角,這些都說(shuō)明了我們研究推廣角概念的必要性.為了區(qū)別起見(jiàn),我們規(guī)定:按逆時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫正角(positiveangle),按順時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫負(fù)角(negativeangle).如果一條射線沒(méi)有做任何旋轉(zhuǎn),我們稱它形成了一個(gè)零角(zeroangle).

8.學(xué)習(xí)小結(jié)

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會(huì)寫(xiě)終邊落在x軸、y軸、直

線上的角的集合.

五、評(píng)價(jià)設(shè)計(jì)

1.作業(yè):習(xí)題1.1A組第1,2,3題.

2.多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,

進(jìn)一步理解具有相同終邊的角的特點(diǎn).

課后小結(jié)

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會(huì)寫(xiě)終邊落在x軸、y軸、直

線上的角的集合.

課后習(xí)題

作業(yè):

1、習(xí)題1.1A組第1,2,3題.

2.多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,

進(jìn)一步理解具有相同終邊的角的特點(diǎn).

板書(shū)

高二簡(jiǎn)單的數(shù)學(xué)教案篇11

●三維目標(biāo):

(1)知識(shí)與技能:

掌握歸納推理的技巧,并能運(yùn)用解決實(shí)際問(wèn)題。

(2)過(guò)程與方法:

通過(guò)“自主、合作與探究”實(shí)現(xiàn)“一切以學(xué)生為中心”的理念。

(3)情感、態(tài)度與價(jià)值觀:

感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)興趣,使其體會(huì)到數(shù)學(xué)學(xué)習(xí)的美感。

●教學(xué)重點(diǎn):

歸納推理及方法的總結(jié)。

●教學(xué)難點(diǎn):

歸納推理的含義及其具體應(yīng)用。

●教具準(zhǔn)備:

與教材內(nèi)容相關(guān)的資料。

●課時(shí)安排:

1課時(shí)

●教學(xué)過(guò)程:

一.問(wèn)題情境

(1)原理初探

①引入:“阿基米德曾對(duì)國(guó)王說(shuō),給我一個(gè)支點(diǎn),我將撬起整個(gè)地球!”

②提問(wèn):大家認(rèn)為可能嗎?他為何敢夸下如此??冢坷碛珊卧??

③探究:他是怎么發(fā)現(xiàn)“杠桿原理”的?

從而引入兩則小典故:

A:一個(gè)小孩,為何輕輕松松就能提起一大桶水?

B:修筑河堤時(shí),奴隸們是怎樣搬運(yùn)巨石的?

高二簡(jiǎn)單的數(shù)學(xué)教案篇12

教學(xué)目標(biāo)

1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

(1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;

(2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

(3)通過(guò)通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問(wèn)題.

2.通過(guò)對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

3.通過(guò)對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

教學(xué)建議

教材分析

(1)知識(shí)結(jié)構(gòu)

是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

(2)重點(diǎn)、難點(diǎn)分析

教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.

①與等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).

②雖然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

③對(duì)等差數(shù)列、的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

教學(xué)建議

(1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.

(2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括的定義.

(3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.

(4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法.啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫(huà)數(shù)列的圖象.

(5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

(6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

教學(xué)設(shè)計(jì)示例

課題:的概念

教學(xué)目標(biāo)

1.通過(guò)教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.

2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).

教學(xué)用具

投影儀,多媒體軟件,電腦.

教學(xué)方法

討論、談話法.

教學(xué)過(guò)程

一、提出問(wèn)題

給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn).(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為).

二、講解新課

請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲(chóng)分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)

(板書(shū))

1.的定義(板書(shū))

根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的.教師寫(xiě)出的定義,標(biāo)注出重點(diǎn)詞語(yǔ).

請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是,當(dāng)時(shí),它只是等差數(shù)列,而不是.教師追問(wèn)理由,引出對(duì)的認(rèn)識(shí):

2.對(duì)定義的認(rèn)識(shí)(板書(shū))

(1)的首項(xiàng)不為0;

(2)的每一項(xiàng)都不為0,即;

問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

(3)公比不為0.

用數(shù)學(xué)式子表示的定義.

是①.在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為是?為什么不能?

式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

3.的通項(xiàng)公式(板書(shū))

問(wèn)題:用和表示第項(xiàng).

①不完全歸納法

.

②疊乘法

,…,,這個(gè)式子相乘得,所以.

(板書(shū))(1)的通項(xiàng)公式

得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

(板書(shū))(2)對(duì)公式的認(rèn)識(shí)

由學(xué)生來(lái)說(shuō),最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

三、小結(jié)

1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;

3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

四、作業(yè)(略)

五、板書(shū)設(shè)計(jì)

1.等比數(shù)列的定義

2.對(duì)定義的認(rèn)識(shí)

3.等比數(shù)列的通項(xiàng)公式

(1)公式

(2)對(duì)公式的認(rèn)識(shí)

探究活動(dòng)

將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

參考答案:

30次后,厚度為,這個(gè)厚度超過(guò)了世界的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍?,比如紙?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了.還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).

高二簡(jiǎn)單的數(shù)學(xué)教案篇13

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

1.掌握平面向量的數(shù)量積及其幾何意義;

2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

3.了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;

4.掌握向量垂直的條件.

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):平面向量的數(shù)量積定義

教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

教學(xué)過(guò)程

1.平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,

則數(shù)量abcosq叫a與b的數(shù)量積,記作a×b,即有a×b=abcosq,(0≤θ≤π).

并規(guī)定0向量與任何向量的數(shù)量積為0.

×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?

2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?

(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定.

(2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分.符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替.

(3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0.因?yàn)槠渲衏osq有可能為0

高二簡(jiǎn)單的數(shù)學(xué)教案篇14

一、指導(dǎo)思想:

全面貫徹教育方針,深入實(shí)施素質(zhì)教育,使學(xué)生在高一學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步體會(huì)數(shù)學(xué)對(duì)發(fā)展自己思維能力的作用,體會(huì)數(shù)學(xué)對(duì)推動(dòng)社會(huì)進(jìn)步和科學(xué)發(fā)展的意義以及數(shù)學(xué)的文化價(jià)值,提高數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。

二、教學(xué)具體目標(biāo)

1、期中考前完成必修3、選修2—3第一章

2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

3、提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

三、教材特點(diǎn):

我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,強(qiáng)調(diào)了問(wèn)題提出,抽象概括,分析理解,思考交流等研究性學(xué)習(xí)過(guò)程。具體特點(diǎn)如下:

1、“親和力”:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

2、“問(wèn)題性”:專門(mén)安排了“課題學(xué)習(xí)”和“探究活動(dòng)”,培養(yǎng)問(wèn)題意識(shí),孕育創(chuàng)新精神。

3、“科學(xué)性”與“思想性”:通過(guò)不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問(wèn)題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

4、“時(shí)代性”與“應(yīng)用性”:教材中有“信息技術(shù)建議”和“信息技術(shù)應(yīng)用”,以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。

5、“人文應(yīng)用價(jià)值性”:編寫(xiě)了一些閱讀材料,開(kāi)拓學(xué)生視野,從數(shù)學(xué)史的發(fā)展足跡中獲取營(yíng)養(yǎng)和動(dòng)力,全面感受數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。

四、教法分析:

1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

2、通過(guò)“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

3、在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

五、教學(xué)措施:

1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹(shù)立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法

6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。

六、教學(xué)進(jìn)度安排(略)

高二簡(jiǎn)單的數(shù)學(xué)教案篇15

【教學(xué)目標(biāo)】

1.知識(shí)與技能

(1)學(xué)生通過(guò)自主學(xué)習(xí),初步理解集合的概念,理解元素與集合間的關(guān)系,了解集合元素的確定性、互異性,無(wú)序性,知道常用數(shù)集及其記法;

(2)掌握集合的常用表示法——列舉法和描述法。

2.過(guò)程與方法

通過(guò)實(shí)例了解集合的含義,體會(huì)元素與集合的“屬于”關(guān)系,能選擇合適的語(yǔ)言(如自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言)描述不同的具體問(wèn)題,提高語(yǔ)言轉(zhuǎn)換和抽象概括能力,樹(shù)立用集合語(yǔ)言表示數(shù)學(xué)內(nèi)容的意識(shí)。

3.情態(tài)與價(jià)值

在掌握基本概念的基礎(chǔ)上,能夠解決相關(guān)問(wèn)題,獲得數(shù)學(xué)學(xué)習(xí)的成就感,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。

【重點(diǎn)難點(diǎn)】

1.教學(xué)重點(diǎn):集合的基本概念與表示方法。

2.教學(xué)難點(diǎn):選擇合適的方法正確表示集合。

【教學(xué)思路】

通過(guò)實(shí)例以及學(xué)生熟悉的數(shù)集,引入集合的概念,進(jìn)而給出集合的表示方法,學(xué)生通過(guò)自我體會(huì)、自主學(xué)習(xí)、自我總結(jié)達(dá)到掌握本節(jié)課內(nèi)容的目的。教學(xué)過(guò)程按照“提出問(wèn)題——學(xué)生討論——?dú)w納總結(jié)——獲得新知——自我檢測(cè)”環(huán)節(jié)安排。

510387