2024年初三數(shù)學教案

| 新華0

通過教案,教師可以了解學生的學習情況和需求,從而更好地滿足學生的學習需求,提高學生的學習效果和自信心。要怎么寫2024年初三數(shù)學教案呢?下面給大家分享一些2024年初三數(shù)學教案,供大家參考。

2024年初三數(shù)學教案篇1

一、概念:三、例1----------四、特殊角的正余弦值

-------------------------------------------------------

二、范圍:------------------五、例2------------

正弦和余弦(三)

一、素質(zhì)教育目標

(一)知識教學點

使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系.

(二)能力訓練點

逐步培養(yǎng)學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.

(三)德育滲透點

培養(yǎng)學生獨立思考、勇于創(chuàng)新的精神.

二、教學重點、難點

1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用.

2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用.

三、教學步驟

(一)明確目標

1.復習提問

(1)、什么是∠A的正弦、什么是∠A的余弦,結(jié)合圖形請學生回答.因為正弦、余弦的概念是研究本課內(nèi)容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當?shù)难a救措施.

(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學們觀察,從中發(fā)現(xiàn)什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”.

2.導入新課

根據(jù)這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.

(二)、整體感知

關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明.引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明.

(三)重點、難點的學習和目標完成過程

1.通過復習特殊角的三角函數(shù)值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發(fā)學生的學習熱情,使學生的思維積極活躍.

2.這時少數(shù)反應快的學生可能頭腦中已經(jīng)“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結(jié)合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養(yǎng)學生邏輯思維能力及獨立思考、勇于創(chuàng)新的精神.

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.

sinA=cos(90°-A),cosA=sin(90°-A).

4.在學習了正、余弦概念的基礎上,學生了解以上內(nèi)容并不困難,但是,由于學生初次接觸三角函數(shù),還不熟練,而定理又涉及余角、余函數(shù),使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固.

已知∠A和∠B都是銳角,

(1)把cos(90°-A)寫成∠A的正弦.

(2)把sin(90°-A)寫成∠A的余弦.

這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)問比較簡單,對照定理,學生立即可以回答.(2)、(3)比(1)則更深一步,因為(1)明確指出∠B與∠A互余,(2)、(3)讓學生自己發(fā)現(xiàn)35°與55°的角,47°6′分42°54′的角互余,從而根據(jù)定理得出答案,因此(2)、(3)問在課堂上應該請基礎好一些的同學講清思維過程,便于全體學生掌握,在三個問題處理完之后,最好將題目變形:

(2)已知sin35°=0.5736,則cos______=0.5736.

(3)cos47°6′=0.6807,則sin______=0.6807,以培養(yǎng)學生思維能力.

為了配合例3的教學,教材中配備了練習題2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用.

教材中3的設置,實際上是對前二節(jié)課內(nèi)容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節(jié)查正余弦表做了準備.

(四)小結(jié)與擴展

1.請學生做知識小結(jié),使學生對所學內(nèi)容進行歸納總結(jié),將所學內(nèi)容變成自己知識的組成部分.

2.本節(jié)課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結(jié)論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值.

四、布置作業(yè)

教材習題14.1A組4、5.

五、板書設計

2024年初三數(shù)學教案篇2

教學內(nèi)容

一元二次方程概念及一元二次方程一般式及有關概念.

教學目標

了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.

1.通過設置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.

2.一元二次方程的一般形式及其有關概念.

3.解決一些概念性的題目.

4.態(tài)度、情感、價值觀

4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.

重難點關鍵

1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.

2.難點關鍵:通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念.

教學過程

一、復習引入

學生活動:列方程.

問題(1)《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?

如果假設門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.

整理、化簡,得:__________.

問題(2)如圖,如果,那么點C叫做線段AB的黃金分割點.

如果假設剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.

整理,得:________.

老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理.

二、探索新知

學生活動:請口答下面問題.

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.

因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個關于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.

例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.

解:去括號,得:

40-16x-10x+4x2=18

移項,得:4x2-26x+22=0

其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.

例2.(學生活動:請二至三位同學上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.

分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:去括號,得:

x2+2x+1+x2-4=1

移項,合并得:2x2+2x-4=0

其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.

三、鞏固練習

教材P32練習1、2

四、應用拓展

例3.求證:關于x的方程(2-8+17)x2+2x+1=0,不論取何值,該方程都是一元二次方程.

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.

證明:2-8+17=(-4)2+1

∵(-4)2≥0

∴(-4)2+1>0,即(-4)2+1≠0

∴不論取何值,該方程都是一元二次方程.

五、歸納小結(jié)(學生總結(jié),老師點評)

本節(jié)課要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.

六、布置作業(yè)

2024年初三數(shù)學教案篇3

21.2.1配方法(3課時)

第1課時直接開平方法

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學思想,并能應用它解決一些具體問題.

提出問題,列出缺一次項的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.

重點

運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉(zhuǎn)化的數(shù)學思想.

難點

通過根據(jù)平方根的意義解形如x2=n的方程,將知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復習引入

學生活動:請同學們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學生分組討論)

老師點評:回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計劃2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m2,求每年人均住房面積增長率.

分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2

解:設每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.

所以,每年人均住房面積增長率應為20%.

(學生小結(jié))老師引導提問:解一元二次方程,它們的共同特點是什么?

共同特點:把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習

教材第6頁練習.

四、課堂小結(jié)

本節(jié)課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

教材第16頁復習鞏固1.第2課時配方法的基本形式

理解間接即通過變形運用開平方法降次解方程,并能熟練應用它解決一些具體問題.

通過復習可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點

將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.

一、復習引入

(學生活動)請同學們解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經(jīng)化簡為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個方程的解法呢?

問題:要使一塊矩形場地的長比寬多6m,并且面積為16m2,求場地的長和寬各是多少?

(1)列出的經(jīng)化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應該設法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來講如何轉(zhuǎn)化:

x2+6x-16=0移項→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負值,所以場地的寬為2m,長為8m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解.

例1用配方法解下列關于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習

教材第9頁練習1,2.(1)(2).

四、課堂小結(jié)

本節(jié)課應掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負數(shù),可以直接降次解方程的方程.

五、作業(yè)布置

教材第17頁復習鞏固2,3.(1)(2).第3課時配方法的靈活運用

2024年初三數(shù)學教案篇4

教學內(nèi)容

24。2圓的切線(1)

教學目標 使學生掌握切線的識別方法,并能初步運用它解決有關問題

通過切線識別方法的學習,培養(yǎng)學生觀察、分析、歸納問題的能力

教學重點 切線的識別方法

教學難點 方法的理解及實際運用

教具準備 投影儀,膠片

教學過程 教師活動學生活動

(一)復習情境導入

1、復習、回顧直線與圓的三種位置關系。

2、請學生判斷直線和圓的位置關系。

學生判斷的過程,提問:你是怎樣判斷出圖中的直線和圓相切的?根據(jù)學生的回答,繼續(xù)提出問題:如何界定直線與圓是否只有一個公共點?教師指出,根據(jù)切線的定義可以識別一條直線是不是圓的切線,但有時使用定義識別很不方便,為此我們還要學習識別切線的其它方法。(板書課題)搶答

學生總結(jié)判別方法

(二)

實踐與探索1:圓的切線的判斷方法1、由上面的復習,我們可以把上節(jié)課所學的切線的定義作為識別切線的方法1——定義法:與圓只有一個公共點的直線是圓的切線。

2、當然,我們還可以由上節(jié)課所學的用圓心到直線的距離與半徑之間的關系來判斷直線與圓是否相切,即:當時,直線與圓的位置關系是相切。以此作為識別切線的方法2——數(shù)量關系法:圓心到直線的距離等于半徑的直線是圓的切線。

3、實驗:作⊙O的半徑OA,過A作l⊥OA可以發(fā)現(xiàn):

(1)直線經(jīng)過半徑的外端點;

(2)直線垂直于半徑。這樣我們就得到了從位置上來判斷直線是圓的切線的方法3——位置關系法:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線。理解并識記圓的切線的幾種方法,并比較應用。

通過實驗探究圓的切線的位置判別方法,深入理解它的兩個要義。

三、課堂練習

思考:現(xiàn)在,任意給定一個圓,你能不能作出圓的切線?應該如何作?

請學生回顧作圖過程,切線是如何作出來的?它滿足哪些條件?引導學生總結(jié)出:①經(jīng)過半徑外端;②垂直于這條半徑。

請學生繼續(xù)思考:這兩個條件缺少一個行不行?(學生畫出反例圖)

(圖1)(圖2)圖(3)

圖(1)中直線經(jīng)過半徑外端,但不與半徑垂直;圖(2)中直線與半徑垂直,但不經(jīng)過半徑外端。從以上兩個反例可以看出,只滿足其中一個條件的直線不是圓的切線。

最后引導學生分析,方法3實際上是從前一節(jié)所講的“圓心到直線的距離等于半徑時直線和圓相切”這個結(jié)論直接得出來的,只是為了便于應用把它改寫成“經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線”這種形式。試驗體會圓的位置判別方法。

理解位置判別方法的兩個要素。

(四)應用與拓展例1、如圖,已知直線AB經(jīng)過⊙O上的點A,并且AB=OA,OBA=45,直線AB是⊙O的切線嗎?為什么?

例2、如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,BAD=B=30,邊BD交圓于點D。BD是⊙O的切線嗎?為什么?

分析:欲證BD是⊙O的切線,由于BD過圓上點D,若連結(jié)OD,則BD過半徑OD的外端,因此只需證明BD⊥OD,因OA=OD,BAD=B,易證BD⊥OD。

教師板演,給出解答過程及格式。

課堂練習:課本練習1-4先選擇方法,弄清位置判別方法與數(shù)量判別方法的本質(zhì)區(qū)別。

注意圓的切線的特征與識別的區(qū)別。

(四)小結(jié)與作業(yè)識別一條直線是圓的切線,有三種方法:

(1)根據(jù)切線定義判定,即與圓只有一個公共點的直線是圓的切線;

(2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓的切線;

(3)根據(jù)直線的位置關系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線,

說明一條直線是圓的切線,常常需要作輔助線,如果已知直線過圓上某一點,則作出過這一點的半徑,證明直線垂直于半徑即可(如例2)。

各抒己見,談收獲。

(五)板書設計

識別一條直線是圓的切線,有三種方法:例:

(1)根據(jù)切線定義判定,即與圓只有一個公共點的直線是圓的切線;

(2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓的切線;

(3)根據(jù)直線的位置關系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線,

說明一條直線是圓的切線,常常需要作輔助線,如果已知直線過圓上某一點,則作出過這一點的半徑,證明直線垂直于半徑

(六)教學后記

教學內(nèi)容 24。2圓的切線(2)課型新授課課時執(zhí)教

教學目標 通過探究,使學生發(fā)現(xiàn)、掌握切線長定理,并初步長定理,并初步學會應用切線長定理解決問題,同時通過從三角形紙片中剪出最大圓的實驗的過程中發(fā)現(xiàn)三角形內(nèi)切圓的畫法,能用內(nèi)心的性質(zhì)解決問題。

教學重點 切線長定理及其應用,三角形的內(nèi)切圓的畫法和內(nèi)心的性質(zhì)。

教學難點 三角形的內(nèi)心及其半徑的確定。

教具準備 投影儀,膠片

教學過程 教師活動學生活動

(一)復習導入:

請同學們回顧一下,如何判斷一條直線是圓的切線?圓的切線具有什么性質(zhì)?(經(jīng)過半徑外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑。)

你能說明以下這個問題?

如右圖所示,PA是的平分線,AB是⊙O的切線,切點E,那么AC是⊙O的切線嗎?為什么?

回顧舊知,看誰說的全。

利用舊知,分析解決該問題。

(二)

實踐與探索問題1、從圓外一點可以作圓的幾條切線?請同學們畫一畫。

2、請問:這一點與切點的兩條線段的長度相等嗎?為什么?

3、切線長的定義是什么?

通過以上幾個問題的解決,使同學們得出以下的結(jié)論:

從圓外一點可以引圓的兩條切線,切線長相等。這一點與圓心的連線

平分兩條切線的夾角。在解決以上問題時,鼓勵同學們用不同的觀點、不同的知識來解決問題,它既可以用書上闡述的對稱的觀點解決,也可以用以前學習的其他知識來解決問題。

(三)拓展與應用例:右圖,PA、PB是,切點分別是A、B,直線EF也是⊙O的切線,切點為P,交PA、PB為E、F點,已知,,(1)求的周長;(2)求的度數(shù)。

解:(1)連結(jié)PA、PB、EF是⊙O的切線

所以,,

所以的周長(2)因為PA、PB、EF是⊙O的切線

所以,,,

所以

所以

畫圖分析探究,教學中應注重基本圖形的教學,引導學生發(fā)現(xiàn)基本圖形,應用基本圖形解決問題。

(四)小結(jié)與作業(yè)談一下本節(jié)課的收獲?各抒己見,看誰說得最好

(五)板書設計

切線(2)

切線長相等例:

切線長性質(zhì)

點與圓心連線平分兩切線夾角

(六)教學后記

2024年初三數(shù)學教案篇5

[實踐與探索]

例1.在同一直角坐標系中,畫出函數(shù)與的圖象.

解列表.

x…-3-2-10123…

…188202818…

…20104241020…

描點、連線,畫出這兩個函數(shù)的圖象,如圖26.2.3所示.

回顧與反思當自變量x取同一數(shù)值時,這兩個函數(shù)的函數(shù)值之間有什么關系?反映在圖象上,相應的兩個點之間的位置又有什么關系?

探索觀察這兩個函數(shù),它們的開口方向、對稱軸和頂點坐標有那些是相同的?又有哪些不同?你能由此說出函數(shù)與的圖象之間的關系嗎?

例2.在同一直角坐標系中,畫出函數(shù)與的圖象,并說明,通過怎樣的平移,可以由拋物線得到拋物線.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描點、連線,畫出這兩個函數(shù)的圖象,如圖26.2.4所示.

可以看出,拋物線是由拋物線向下平移兩個單位得到的.

回顧與反思拋物線和拋物線分別是由拋物線向上、向下平移一個單位得到的.

探索如果要得到拋物線,應將拋物線作怎樣的平移?

例3.一條拋物線的開口方向、對稱軸與相同,頂點縱坐標是-2,且拋物線經(jīng)過點(1,1),求這條拋物線的函數(shù)關系式.

解由題意可得,所求函數(shù)開口向上,對稱軸是y軸,頂點坐標為(0,-2),

因此所求函數(shù)關系式可看作,又拋物線經(jīng)過點(1,1),

所以,,

解得.

故所求函數(shù)關系式為.

回顧與反思(a、k是常數(shù),a≠0)的圖象的開口方向、對稱軸、頂點坐標歸納如下:

開口方向?qū)ΨQ軸頂點坐標

[當堂課內(nèi)練習]

1.在同一直角坐標系中,畫出下列二次函數(shù)的圖象:

,,.

觀察三條拋物線的相互關系,并分別指出它們的開口方向及對稱軸、頂點的位置.你能說出拋物線的開口方向及對稱軸、頂點的位置嗎?

2.拋物線的開口,對稱軸是,頂點坐標是,它可以看作是由拋物線向平移個單位得到的.

3.函數(shù),當x時,函數(shù)值y隨x的增大而減小.當x時,函數(shù)取得最值,最值y=.

[本課課外作業(yè)]

A組

1.已知函數(shù),,.

(1)分別畫出它們的圖象;

(2)說出各個圖象的開口方向、對稱軸、頂點坐標;

(3)試說出函數(shù)的圖象的開口方向、對稱軸、頂點坐標.

2.不畫圖象,說出函數(shù)的開口方向、對稱軸和頂點坐標,并說明它是由函數(shù)通過怎樣的平移得到的.

3.若二次函數(shù)的圖象經(jīng)過點(-2,10),求a的值.這個函數(shù)有還是最小值?是多少?

B組

4.在同一直角坐標系中與的圖象的大致位置是()

5.已知二次函數(shù),當k為何值時,此二次函數(shù)以y軸為對稱軸?寫出其函數(shù)關系式.

[本課學習體會]

2024年初三數(shù)學教案篇6

學習目標

1.了解圓周角的概念.

2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

4.熟練掌握圓周角的定理及其推理的靈活運用.

設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數(shù)學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題

學習過程

一、溫故知新:

(學生活動)同學們口答下面兩個問題.二、自主學習:

1.什么叫圓心角?

2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?

自學教材P90---P93,思考下列問題:

1、什么叫圓周角?圓周角的兩個特征:。

2、在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

(1)一個弧上所對的圓周角的個數(shù)有多少個?

(2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?

(3).同弧上的圓周角與圓心角有什么關系?

3、默寫圓周角定理及推論并證明。

4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質(zhì)成立嗎?

5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?

三、典型例題:

例1、(教材93頁例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。

例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?

四、鞏固練習:

1、(教材P93練習1)

解:

2、(教材P93練習2)

3、(教材P93練習3)

證明:

4、(教材P95習題24.1第9題)

五、總結(jié)反思:

達標檢測

1.如圖1,A、B、C三點在⊙O上,∠AOC=100°,則∠ABC等于().

A.140°B.110°C.120°D.130°

(1)(2)(3)

2.如圖2,∠1、∠2、∠3、∠4的大小關系是()

A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()

A.100°B.110°C.120°D.130°

4.半徑為2a的⊙O中,弦AB的長為2a,則弦AB所對的圓周角的度數(shù)是________.

5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.

(4)(5)

6.(中考題)如圖5,于,若,則

7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.

拓展創(chuàng)新

1.如圖,已知AB=AC,∠APC=60°

(1)求證:△ABC是等邊三角形.

(2)若BC=4cm,求⊙O的面積.

3、教材P95習題24.1第12、13題。

布置作業(yè)教材P95習題24.1第10、11題。

2024年初三數(shù)學教案篇7

教學目標

1.初步掌握用直接開平方法解一元二次方程,會用直接開平方法解形如的方程;

2.初步掌握用配方法解一元二次方程,會用配方法解數(shù)字系數(shù)的一元二次方程;

3.掌握一元二次方程的求根公式的推導,能夠運用求根公式解一元二次方程;

4.會用因式分解法解某些一元二次方程。

5.通過對一元二次方程解法的教學,使學生進一步理解“降次”的數(shù)學方法,進一步獲得對事物可以轉(zhuǎn)化的認識。

教學重點和難點

重點:一元二次方程的四種解法。

難點:選擇恰當?shù)姆椒ń庖辉畏匠獭?/p>

教學建議:

一、教材分析:

1.知識結(jié)構(gòu):一元二次方程的解法

2.重點、難點分析

(1)熟練掌握開平方法解一元二次方程

用開平方法解一元二次方程,一種是直接開平方法,另一種是配方法。

如果一元二次方程的一邊是未知數(shù)的平方或含有未知數(shù)的一次式的平方,另一邊是一個非負數(shù),或完全平方式,如方程,和方程就可以直接開平方法求解,在開平方時注意取正、負兩個平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,轉(zhuǎn)化為的形式來求解。配方時要注意把二次項系數(shù)化為1和方程兩邊都加上一次項系數(shù)一半的平方這兩個關鍵步驟。

(2)熟記求根公式和公式中字母的意義在使用求根公式時要注意以下三點:

1)把方程化為一般形式,并做到、之間沒有公因數(shù),且二次項系數(shù)為正整數(shù),這樣代入公式計算較為簡便。

2)把一元二次方程的各項系數(shù)、、代入公式時,注意它們的符號。

3)當時,才能求出方程的兩根。

(3)抓住方程特點,選用因式分解法解一元二次方程

如果一個一元二次方程的一邊是零,另一邊易于分解成兩個一次因式時,就可以用因式分解法求解。這時只要使每個一次因式等于零,分別解兩個一元一次方程,得到兩個根就是一元二次方程的解。

我們共學習了四種解一元二次方程的方法:直接開平方法;配方法;公式法和因式分解法。解方程時,要認真觀察方程的特征,選用適當?shù)姆椒ㄇ蠼狻?/p>

二、教法建議

1.教學方法建議采用啟發(fā)引導,講練結(jié)合的授課方式,發(fā)揮教師主導作用,體現(xiàn)學生主體地位,學生獲取知識必須通過學生自己一系列思維活動完成,啟發(fā)誘導學生深入思考問題,有利于培養(yǎng)學生思維靈活、嚴謹、深刻等良好思維品質(zhì).

2.注意培養(yǎng)應用意識.教學中應不失時機地使學生認識到數(shù)學源于實踐并反作用于實踐.

2024年初三數(shù)學教案篇8

二次根式

教學目標

1、了解二次根式的概念、

2、掌握二次根式的基本性質(zhì)

教學過程

一、提出問題

上一節(jié)我們學習了平方根和算術平方根的意義,引進了一個新的記號,現(xiàn)在請同學們思考并回答下面兩個問題:

1、表示什么?

2、a需要滿足什么條件?為什么?

二、合作交流,解決問題

讓學生合作交流,然后回答問題(可以補充),歸納為;

1、當a是正數(shù)時,表示a的算術平方根,即正數(shù)a的兩個平方根中的一個正數(shù);

2、當a是零時,表示零,也叫零的算術平方根;

3、a≥0,因為任何一個有理數(shù)的平方都大于或等于零

三、歸納特點,引入二次根式概念

1、基本性質(zhì)、

問題1 你能用一句話概括以上3個結(jié)論嗎?

讓一個學生回答、其他學生補充,概括為:(a≥0)表示非負數(shù)a的算術平方根,也就是說,(a≥0)是一個非負數(shù),即≥0(a≥0)。

問題2 ()2(a≥0)等于什么?說說你的理由并舉例驗證。

讓學生小組討論或自主探索得出結(jié)論:()2=a(a≥0),如()2=4,()2=2等、

以上兩個問題的結(jié)論就是基本性質(zhì),特別是()2=a(a≥0)可以當公式使用,直接應用于計算。反過來,把()2=a(a≥0)寫成a=()2(a≥0)的形式,這說明:任何一個非負數(shù)a都可以寫成一個數(shù)的平方的形式、例如:3=()2,0.3= ()2

提問:

(1)0=()2對不對?

(2)-5=()2對不對?如果不對,錯在哪里?

2、二次根式概念

形如(a≥0)的式子叫做二次根式、

說明:二次根式必須具備以下特點;

(1)有二次根號;

(2)被開方數(shù)不能小于0。

讓學生舉出二次根式的幾個例子,并判斷,(a<0)、、(a<o)是不是二次根式。< p="">

四、范例

例1、要使式子有意義,字母x的取值必須滿足什么條件?

提問:

若將式子改為,則字母x的取值必須滿足什么條件?

五、課堂練習

Pl0頁練習1、2、

六、思考提高

我們已經(jīng)研究了()2(a≥0)等于a,現(xiàn)在研究等于什么

提問:

1、對于抽象問題的研究,常常采用什么策略?

2、在中,a的取值有沒有限制?

3、取一些數(shù)值來驗證。通過驗證,你能發(fā)現(xiàn)什么規(guī)律?

因此,今后我們遇到時,可先改寫成a的絕對值|a|,再按照a取正數(shù)值,0還是負數(shù)值來取值、例如當x<0時,=|4x|=-4x

4、()2與是一樣的嗎?說說你的理由,并與同學交流。

七、小結(jié)

1、什么叫做二次根式?你們能舉出幾個例子嗎?

2、二次根式有哪兩個形式上的特點?

3、二次根式有哪些性質(zhì)?

八、作業(yè)

習題22.1第1、2、3、4題、

教學后記:

2024年初三數(shù)學教案篇9

【學習目標】

1.了解圓周角的概念.

2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

4.熟練掌握圓周角的定理及其推理的靈活運用.

設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數(shù)學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題

【學習過程】

一、溫故知新:

(學生活動)同學們口答下面兩個問題.

1.什么叫圓心角?

2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?

二、自主學習:

自學教材P90---P93,思考下列問題:

1、什么叫圓周角?圓周角的兩個特征:。

2、在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

(1)一個弧上所對的圓周角的個數(shù)有多少個?

(2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?

(3).同弧上的圓周角與圓心角有什么關系?

3、默寫圓周角定理及推論并證明。

4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質(zhì)成立嗎?

5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?

三、典型例題:

例1、(教材93頁例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。

例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?

四、鞏固練習:

1、(教材P93練習1)

解:

2、(教材P93練習2)

3、(教材P93練習3)

證明:

4、(教材P95習題24.1第9題)

五、總結(jié)反思:

【達標檢測】

1.如圖1,A、B、C三點在⊙O上,∠AOC=100°,則∠ABC等于().

A.140°B.110°C.120°D.130°

(1)(2)(3)

2.如圖2,∠1、∠2、∠3、∠4的大小關系是()

A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()

A.100°B.110°C.120°D.130°

4.半徑為2a的⊙O中,弦AB的長為2a,則弦AB所對的圓周角的度數(shù)是________.

5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.

(4)(5)

6.(中考題)如圖5,于,若,則

7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.

【拓展創(chuàng)新】

1.如圖,已知AB=AC,∠APC=60°

(1)求證:△ABC是等邊三角形.

(2)若BC=4cm,求⊙O的面積.

3、教材P95習題24.1第12、13題。

【布置作業(yè)】

教材P95習題24.1第10、11題。

2024年初三數(shù)學教案篇10

教材分析

本節(jié)課是以成本下降為問題探究,討論平均變化率的問題,這類問題在現(xiàn)實世界中有很多的原型,例如經(jīng)濟增長率、人口增長率等等,聯(lián)系生活實際很密切,這類問題也是一元二次方程在生活中最典型的應用。本節(jié)課主要是討論兩輪(即兩個時間段)的平均變化率,它可以用一元二次方程作為數(shù)學模型。

學情分析

1、由于我們的學生對列方程解應用題有畏懼的心理,感覺很困難,根據(jù)探究1學生的掌握情況來看,決定把探究2作為一課時,來專門學習。

2、學生對列方程解應用題的步驟已經(jīng)很熟悉,而且有了第一課時連續(xù)傳播問題的做鋪墊,適合用自主探究,合作交流的學習方法。

3、連續(xù)增長問題的中的數(shù)量關系、規(guī)律的發(fā)現(xiàn)是本節(jié)課的難點,所以我把問題分解了讓學生逐個突破,由于九年級學生具有一定的解題歸納能力,所以采用從一般到特殊的探究方式。

教學目標

知識與技能:

1、能根據(jù)具體問題中的數(shù)量關系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界某些問題的一個有效的數(shù)學模型。

2、能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理。

過程與方法:

1、經(jīng)歷將實際問題抽象為數(shù)學問題的過程,探索問題中的數(shù)量關系,并能運用一元二次方程對之進行描述。

2、通過成本降低、能源增長等實際問題,學會將實際應用問題轉(zhuǎn)化為數(shù)學問題,發(fā)展實踐應用意識。

情感與態(tài)度:通過用一元一次方程解決身邊的問題,體會數(shù)學知識的應用價值,提高學生學習數(shù)學的興趣。

教學重點和難點

重點:利用增長率問題中的數(shù)量關系,列出方程解決問題。

難點:理清增長率問題中的數(shù)量關系。

2024年初三數(shù)學教案篇11

回顧與反思當自變量x取同一數(shù)值時,這兩個函數(shù)的函數(shù)值之間有什么關系?反映在圖象上,相應的兩個點之間的位置又有什么關系?

探索觀察這兩個函數(shù),它們的開口方向、對稱軸和頂點坐標有那些是相同的?又有哪些不同?你能由此說出函數(shù)與的圖象之間的關系嗎?

例2.在同一直角坐標系中,畫出函數(shù)與的圖象,并說明,通過怎樣的平移,可以由拋物線得到拋物線.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描點、連線,畫出這兩個函數(shù)的圖象,如圖26.2.4所示.

可以看出,拋物線是由拋物線向下平移兩個單位得到的.

回顧與反思拋物線和拋物線分別是由拋物線向上、向下平移一個單位得到的.

探索如果要得到拋物線,應將拋物線作怎樣的平移?

例3.一條拋物線的開口方向、對稱軸與相同,頂點縱坐標是-2,且拋物線經(jīng)過點(1,1),求這條拋物線的函數(shù)關系式.

解由題意可得,所求函數(shù)開口向上,對稱軸是y軸,頂點坐標為(0,-2),

因此所求函數(shù)關系式可看作,又拋物線經(jīng)過點(1,1),

所以,,

解得.

故所求函數(shù)關系式為.

回顧與反思(a、k是常數(shù),a≠0)的圖象的開口方向、對稱軸、頂點坐標歸納如下:

開口方向?qū)ΨQ軸頂點坐標

[當堂課內(nèi)練習]

1.在同一直角坐標系中,畫出下列二次函數(shù)的圖象:

,,.

觀察三條拋物線的相互關系,并分別指出它們的開口方向及對稱軸、頂點的位置.你能說出拋物線的開口方向及對稱軸、頂點的位置嗎?

2.拋物線的開口,對稱軸是,頂點坐標是,它可以看作是由拋物線向平移個單位得到的.

3.函數(shù),當x時,函數(shù)值y隨x的增大而減小.當x時,函數(shù)取得最值,最值y=.

[本課課外作業(yè)]

A組

1.已知函數(shù),,.

(1)分別畫出它們的圖象;

(2)說出各個圖象的開口方向、對稱軸、頂點坐標;

(3)試說出函數(shù)的圖象的開口方向、對稱軸、頂點坐標.

2.不畫圖象,說出函數(shù)的開口方向、對稱軸和頂點坐標,并說明它是由函數(shù)通過怎樣的平移得到的.

3.若二次函數(shù)的圖象經(jīng)過點(-2,10),求a的值.這個函數(shù)有還是最小值?是多少?

B組

4.在同一直角坐標系中與的圖象的大致位置是()

5.已知二次函數(shù),當k為何值時,此二次函數(shù)以y軸為對稱軸?寫出其函數(shù)關系式.

2024年初三數(shù)學教案篇12

教學目標:

1.使學生理解直線和圓的相交、相切、相離的概念。

2.掌握直線與圓的位置關系的性質(zhì)與判定并能夠靈活運用來解決實際問題。

3.培養(yǎng)學生把實際問題轉(zhuǎn)化為數(shù)學問題的能力及分類和化歸的能力。

重點難點:

1.重點:直線與圓的三種位置關系的概念。

2.難點:運用直線與圓的位置關系的性質(zhì)及判定解決相關的問題。

教學過程:

一.復習引入

1.提問:復習點和圓的三種位置關系。

(目的:讓學生將點和圓的位置關系與直線和圓的位置關系進行類比,以便更好的掌握直線和圓的位置關系)

2.由日出升起過程當中的三個特殊位置引入直線與圓的位置關系問題。

(目的:讓學生感知直線和圓的位置關系,并培養(yǎng)學生把實際問題抽象成數(shù)學模型的能力)

二.定義、性質(zhì)和判定

1.結(jié)合關于日出的三幅圖形,通過學生討論,給出直線與圓的三種位置關系的定義。

(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。

(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。

(3)直線和圓沒有公共點時,叫做直線和圓相離。

2.直線和圓三種位置關系的性質(zhì)和判定:

如果⊙O半徑為r,圓心O到直線l的距離為d,那么:

(1)線l與⊙O相交d<r

(2)直線l與⊙O相切d=r

(3)直線l與⊙O相離d>r

三.例題分析:

例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。

①當r=時,圓與AB相切。

②當r=2cm時,圓與AB有怎樣的位置關系,為什么?

③當r=3cm時,圓與AB又是怎樣的位置關系,為什么?

④思考:當r滿足什么條件時圓與斜邊AB有一個交點?

四.小結(jié)(學生完成)

五、隨堂練習:

(1)直線和圓有種位置關系,是用直線和圓的個數(shù)來定義的;這也是判斷直線和圓的位置關系的.重要方法。

(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。

①當d=5cm時,直線L與圓的位置關系是;

②當d=13cm時,直線L與圓的位置關系是;

③當d=6。5cm時,直線L與圓的位置關系是;

(目的:直線和圓的位置關系的判定的應用)

(3)⊙O的半徑r=3cm,點O到直線L的距離為d,若直線L與⊙O至少有一個公共點,則d應滿足的條件是()

(A)d=3(B)d≤3(C)d<3d="">3

(目的:直線和圓的位置關系的性質(zhì)的應用)

(4)⊙O半徑=3cm。點P在直線L上,若OP=5cm,則直線L與⊙O的位置關系是()

(A)相離(B)相切(C)相交(D)相切或相交

(目的:點和圓,直線和圓的位置關系的結(jié)合,提高學生的綜合、開放性思維)

想一想:

在平面直角坐標系中有一點A(-3,-4),以點A為圓心,r長為半徑時,

思考:隨著r的變化,⊙A與坐標軸交點的變化情況。(有五種情況)

六、作業(yè):P100—2、3

2024年初三數(shù)學教案篇13

本學年既有新任務要完成還有復習更要兼顧,因此事非常重要的一個學期,要以培養(yǎng)學生創(chuàng)新精神和實踐能力為重點,探索有效教學新模式。以課堂教學為中心,緊緊圍繞初中數(shù)學教材、數(shù)學學科“基本要求”進行教學,針對近年來中考命題的變化和趨勢進行研究,收集試卷,精選習題,建立題庫,努力把握中考方向,積極探索高效的復習途徑,力求達到減負、加壓、增效的目的,促進學生生動、活潑、主動地學習,力求中考取得好成績。通過數(shù)學課的教學,使學生切實學好從事現(xiàn)代化建設和進一步學習所必須的基本知識和基本能力,在思維能力、情感態(tài)度與價值觀等多方面得到進步和發(fā)展。

一、學情分析:

本學年我?guī)Ь拍昙壎?,學生上學期成績居全縣第四,兩極分化越來越嚴重。有部分學生成績下滑很明顯,學習習慣較差。做事慢慢騰騰,有幾個學生應該考優(yōu)生的學生都沒有考到優(yōu)生,如連清,趙熙,馬曉宇,李功奎,張信心,夏森,柯昭君,許鑫鑫,徐婷婷等,這些也許是老師督導不到位,也有少數(shù)學生自制能力較差,對自己要求不嚴,甚至自暴自棄。這些都需要針對不同情況采取相應措施,耐心教育。

二、教材分析:

本學期的新內(nèi)容只剩兩章:解直角三角形和投影。

四、教學目標:

1、在教學過程中抓住以下幾個環(huán)節(jié):(1)認真?zhèn)湔n。認真研究教材及考綱,明確教學目標,抓住重點、難點,精心設計教學過程,重視每一章節(jié)內(nèi)容與前后知識的聯(lián)系及其地位,重視課后反思,設計好每一節(jié)課的師生互動的細節(jié)。(2)上好課:在備好課的基礎上,上好每一個45分鐘,提高45分鐘的效率,讓每一位同學都聽的懂,對部分基礎較差者要循序漸進,以選用的例題的難易程度不同,使每個學生能“吃”飽、“吃”好。(3)注重課后反思,及時的將一節(jié)課的得失記錄下來,不斷積累教學經(jīng)驗。(4)批好每一次作業(yè):作業(yè)反映了一節(jié)課的效果如何,學生對知識的掌握程度如何,認真批改作業(yè),使教師能迅速掌握情況,對癥下藥。(5)按時檢驗學習成果,做到單元測驗的有效、及時,測驗卷子的批改不過夜??己髮Φ湫湾e誤利用學生想馬上知道答案的心理立即點評。(6)及時指導、糾錯:爭取面批、面授,今天的任務不推托到明日,爭取一切時間,緊緊抓住初三階段的每分每秒。課后反饋。落實每一堂課后輔助,查漏補缺。精選適當?shù)木毩曨}、測試卷,及時批改作業(yè),發(fā)現(xiàn)問題及時給學生面對面的指出并指導學生搞懂弄通,不留一個疑難點,讓學生學有所獲。(7)積極與其它老師溝通,加強教研教改,提高教學水平。(8)經(jīng)常聽取學生良好的合理化建議。(9)以“兩頭”帶“中間”戰(zhàn)略思想不變。(10)深化兩極生的訓導。

五、嚴格按照教學進度,有序的進行教學工作。用心去做,從細節(jié)去做,盡自己追大的努力,發(fā)揮自己的能力去做好初三畢業(yè)班的教學工作。

六、強化復習指導。分二階段復習:(一)第一階段全面復習基礎知識,加強基本技能訓練讓學生全面掌握初中數(shù)學基礎知識,提高基本技能,做到全面、扎實、系統(tǒng),形成知識網(wǎng)絡。

這個階段的復習目的是讓學生全面掌握初中數(shù)學基礎知識,提高基本技能,做到全面、扎實、系統(tǒng),形成知識網(wǎng)絡。

1、重視課本,系統(tǒng)復習。現(xiàn)在中考命題仍然以基礎題為主,有些基礎題是課本上的原題或改造,后面的大題雖是“高于教材”,但原型一般還是教材中的例題或習題,是教材中題目的引伸、變形或組合,所以第一階段復習應以課本為主。

2、按知識板塊組織復習。把知識進行歸類,將全初中數(shù)學知識分為十一講:第一講數(shù)與式;第二講方程與不等式;第三講函數(shù);第四講統(tǒng)計與概率;第五講基本圖形;第六講圖形與變換;第七講角、相交線和平行線;第八講三角形;第九講四邊形;第十講三角函數(shù)學;第十一講圓.復習中由教師提出每個講節(jié)的復習提要,指導學生按“提要”復習,同時要注意引導學生根據(jù)個人具體情況把遺忘了知識重溫一遍,邊復習邊作知識歸類,加深記憶,注意引導學生弄清概念的內(nèi)涵和外延,掌握法則、公式、定理的推導或證明,例題的選擇要有針對性、典型性、層次性,并注意分析例題解答的思路和方法。

3、重視對基礎知識的理解和基本方法的指導?;A知識即初中數(shù)學課程中所涉及的概念、公式、公理、定理等。要求學生掌握各知識點之間的內(nèi)在聯(lián)系,理清知識結(jié)構(gòu),形成整體的認識,并能綜合運用。例如一元二次方程的根與二次函數(shù)圖形與x軸交點之間的關系,是中考常常涉及的內(nèi)容,在復習時,應從整體上理解這部分內(nèi)容,從結(jié)構(gòu)上把握教材,達到熟練地將這兩部分知識相互轉(zhuǎn)化。又如一元二次方程與幾何知識的聯(lián)系的題目有非常明顯的特點,應掌握其基本解法。

中考數(shù)學命題除了著重考查基礎知識外,還十分重視對數(shù)學方法的考查,如配方法,換元法,判別式法等操作性較強的數(shù)學方法。在復習時應對每一種方法的內(nèi)涵,它所適應的題型,包括解題步驟都應熟練掌握。

4、重視對數(shù)學思想的理解及運用。如函數(shù)的思想,方程思想,數(shù)形結(jié)合的思想等。

(二)第二階段綜合運用知識,加強能力培養(yǎng),構(gòu)建初中數(shù)學知識結(jié)構(gòu)和網(wǎng)絡,從整體上把握數(shù)學內(nèi)容,以構(gòu)建初中數(shù)學知識結(jié)構(gòu)和網(wǎng)絡為主,從整體上把握數(shù)學內(nèi)容,提高能力。

培養(yǎng)綜合運用數(shù)學知識解題的能力,是學習數(shù)學的重要目的之一。這個階段的復習目的是使學生能把各個講節(jié)中的知識聯(lián)系起來,并能綜合運用,做到舉一反三、觸類旁通。這個階段的例題和練習題要有一定的難度,但又不是越難越好,要讓學生可接受,這樣才能既激發(fā)學生解難求進的學習欲望,又使學生從解決較難問題中看到自己的力量,增強前進的信心,產(chǎn)生更強的求知欲。第二階段就是第一階段復習的延伸和提高,應側(cè)重培養(yǎng)學生的數(shù)學能力。這一階段尤其要精心設計每一節(jié)復習課,注意數(shù)學思想的形成和數(shù)學方法的掌握。初中總復習的內(nèi)容多,復習必須突出重點,抓住關鍵,解決疑難,這就需要充分發(fā)揮教師的主導作用。而復習內(nèi)容是學生已經(jīng)學習過的,各個學生對教材內(nèi)容掌握的程度又各有差異,這就需要教師千方百計地激發(fā)學生復習的主動性、積極性,引導學生有針對性的復習,根據(jù)個人的具體情況,查漏補缺,做知識歸類、解題方法歸類,在形成知識結(jié)構(gòu)的基礎上加深記憶。除了復習形式要多樣,題型要新穎,能引起學生復習的興趣外,還要精心設計復習課的教學方法,提高復習效益

七、不斷鉆研業(yè)務,提高業(yè)務能力及水平。

積極參加業(yè)務學習,看書、看報,參加學校組織的培訓,使之更好的為基礎教育的改革努力,掌握新的技能、技巧,不斷努力,取長補短,揚長避短,努力使教學更開拓,方法更靈活,手段更先進。

八、分層輔導,因材施教對本年級的學生實施分層輔導,利用優(yōu)勝劣汰的方法,激勵學生的學習激情,保證升學率及優(yōu)良率,提高及格率。對部分差生實行義務補課,以提高成績。

2024年初三數(shù)學教案篇14

教材分析

本節(jié)內(nèi)容是上一節(jié)課在學習余角補角基礎上學習的,學生有了一定的基礎,為以后學面直角坐標系的學習做好準備。

學情分析

本節(jié)課對于學生來說學習起來并不太難,在小學階段學生已經(jīng)接觸過方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學生比較有興趣。

教學目標

理解方位角的意義,掌握方位角的判別和應用,通過現(xiàn)實情境,充分利用學生的生活經(jīng)驗去體會方位角的意義。

教學重點和難點

重點:方位角的判別與應用

難點:方位角的畫法及變式題

教學過程(本文來自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)

教學環(huán)節(jié)教師活動預設學生行為設計意圖

一、創(chuàng)設情境,導入新課

二、講授新課

三、鞏固練習

四、課時小結(jié)五、布置作業(yè)由四面八方這個成語引出學生對八個方位的理解

1.先以一個具體圖形告訴學生基本知識點,方位角一般是以正南正北為基準,然后向東或西旋轉(zhuǎn)所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補充例題,引對學生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨立完成書中的例題

生先獨立思考然后與同學合作完成。激發(fā)學生的學習興趣

通遼具體圖形使學生初步認識方位角的表示方法。

使學生通遼具體操作掌握畫方位角的方法

進一步掌握方位角的有關知識,達到知識提升。

板書設計

4.3.3余角和補角(二)——方位角

學生學習活動評價設計

我先將學生按人數(shù)分成若干小組,在課前先給學生發(fā)放導學單,課上先給學生充分的討論時間后學生由小組推薦代表發(fā)言,累積分數(shù),每個小組輪流回答一次,學生代表回答完畢后,其它同學補充糾錯,然后從知識點是否準確,語言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴密等方面來做出評價,然后給出相應分數(shù)。累積到小組積分中課上知識回答后在練習部分,設計搶答題,小組搶答完成。最后計算出總分評出本節(jié)課小組及個人獎,給予口頭表揚。

教學反思

本節(jié)課是在上節(jié)課余角和補角的基礎上學習的,而且在小學階段也已經(jīng)接觸過這部分知識了,基于這個特點,在課堂上我主要采取了自主學習的方式,學生接受的不錯,本節(jié)課的知識雖然簡單但很重要是為以后學面直角坐標系做準備的。出現(xiàn)的問題是有個別同學對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學講給不明白的同學聽,指導其主要從哪方面入手解決此類問題,還有一點,學生在畫圖后容易忽略寫結(jié)論,應強調(diào)。以前在上本節(jié)課時,我是采取的講授法,感覺學生不是很愛聽,后來一想,知道了是因為小學時他們已經(jīng)接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學習的方式感覺學生的積極性上來了,一節(jié)課氣氛很好,相信效果也不錯。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎上使其更加完善。

2024年初三數(shù)學教案篇15

二次根式

教材內(nèi)容

1.本單元教學的主要內(nèi)容:

二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式.

2.本單元在教材中的地位和作用:

二次根式是在學完了八年級下冊第十七章《反比例正函數(shù)》、第十八章《勾股定理及其應用》等內(nèi)容的基礎之上繼續(xù)學習的,它也是今后學習其他數(shù)學知識的基礎.

教學目標

1.知識與技能

(1)理解二次根式的概念.

(2)理解(a≥0)是一個非負數(shù),()2=a(a≥0),=a(a≥0).

(3)掌握?=(a≥0,b≥0),=?;

=(a≥0,b>0),=(a≥0,b>0).

(4)了解最簡二次根式的概念并靈活運用它們對二次根式進行加減.

2.過程與方法

(1)先提出問題,讓學生探討、分析問題,師生共同歸納,得出概念.再對概念的內(nèi)涵進行分析,得出幾個重要結(jié)論,并運用這些重要結(jié)論進行二次根式的計算和化簡.

(2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,并運用規(guī)定進行計算.

(3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運用它進行化簡.

(4)通過分析前面的計算和化簡結(jié)果,抓住它們的共同特點,給出最簡二次根式的概念.利用最簡二次根式的概念,來對相同的二次根式進行合并,達到對二次根式進行計算和化簡的目的.

3.情感、態(tài)度與價值觀

通過本單元的學習培養(yǎng)學生:利用規(guī)定準確計算和化簡的嚴謹?shù)目茖W精神,經(jīng)過探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學生觀察、分析、發(fā)現(xiàn)問題的能力.

教學重點

1.二次根式(a≥0)的內(nèi)涵.(a≥0)是一個非負數(shù);()2=a(a≥0);=a(a≥0)及其運用.

2.二次根式乘除法的規(guī)定及其運用.

3.最簡二次根式的概念.

4.二次根式的加減運算.

教學難點

1.對(a≥0)是一個非負數(shù)的理解;對等式()2=a(a≥0)及=a(a≥0)的理解及應用.

2.二次根式的乘法、除法的條件限制.

3.利用最簡二次根式的概念把一個二次根式化成最簡二次根式.

教學關鍵

1.潛移默化地培養(yǎng)學生從具體到一般的推理能力,突出重點,突破難點.

2.培養(yǎng)學生利用二次根式的規(guī)定和重要結(jié)論進行準確計算的能力,培養(yǎng)學生一絲不茍的科學精神.

單元課時劃分

本單元教學時間約需11課時,具體分配如下:

21.1二次根式3課時

21.2二次根式的乘法3課時

21.3二次根式的加減3課時

教學活動、習題課、小結(jié)2課時

21.1二次根式

第一課時

教學內(nèi)容

二次根式的概念及其運用

教學目標

理解二次根式的概念,并利用(a≥0)的意義解答具體題目.

提出問題,根據(jù)問題給出概念,應用概念解決實際問題.

教學重難點關鍵

1.重點:形如(a≥0)的式子叫做二次根式的概念;

2.難點與關鍵:利用“(a≥0)”解決具體問題.

教學過程

一、復習引入

(學生活動)請同學們獨立完成下列三個問題:

問題1:已知反比例函數(shù)y=,那么它的圖象在第一象限橫、縱坐標相等的點的坐標是___________.

問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長是__________.

問題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.

老師點評:

問題1:橫、縱坐標相等,即x=y,所以x2=3.因為點在第一象限,所以x=,所以所求點的坐標(,).

問題2:由勾股定理得AB=

問題3:由方差的概念得S=.

二、探索新知

很明顯、、,都是一些正數(shù)的算術平方根.像這樣一些正數(shù)的算術平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號.

(學生活動)議一議:

1.-1有算術平方根嗎?

2.0的算術平方根是多少?

3.當a<0,有意義嗎?

老師點評:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).

分析:二次根式應滿足兩個條件:第一,有二次根號“”;第二,被開方數(shù)是正數(shù)或0.

解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.

例2.當x是多少時,在實數(shù)范圍內(nèi)有意義?

分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-1≥0,才能有意義.

解:由3x-1≥0,得:x≥

當x≥時,在實數(shù)范圍內(nèi)有意義.

三、鞏固練習

教材P練習1、2、3.

四、應用拓展

例3.當x是多少時,+在實數(shù)范圍內(nèi)有意義?

分析:要使+在實數(shù)范圍內(nèi)有意義,必須同時滿足中的≥0和中的x+1≠0.

解:依題意,得

由①得:x≥-

由②得:x≠-1

當x≥-且x≠-1時,+在實數(shù)范圍內(nèi)有意義.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a2004+b2004的值.(答案:)

五、歸納小結(jié)(學生活動,老師點評)

本節(jié)課要掌握:

1.形如(a≥0)的式子叫做二次根式,“”稱為二次根號.

2.要使二次根式在實數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負數(shù).

六、布置作業(yè)

1.教材P8復習鞏固1、綜合應用5.

2.選用課時作業(yè)設計.

3.課后作業(yè):《同步訓練》

第一課時作業(yè)設計

一、選擇題1.下列式子中,是二次根式的是()

A.-B.C.D.x

2.下列式子中,不是二次根式的是()

A.B.C.D.

3.已知一個正方形的面積是5,那么它的邊長是()

A.5B.C.D.以上皆不對

二、填空題

1.形如________的式子叫做二次根式.

2.面積為a的正方形的邊長為________.

3.負數(shù)________平方根.

三、綜合提高題

1.某工廠要制作一批體積為1m3的產(chǎn)品包裝盒,其高為0.2m,按設計需要,底面應做成正方形,試問底面邊長應是多少?

2.當x是多少時,+x2在實數(shù)范圍內(nèi)有意義?

3.若+有意義,則=_______.

4.使式子有意義的未知數(shù)x有()個.

A.0B.1C.2D.無數(shù)

5.已知a、b為實數(shù),且+2=b+4,求a、b的值.

第一課時作業(yè)設計答案:

一、1.A2.D3.B

二、1.(a≥0)2.3.沒有

三、1.設底面邊長為x,則0.2x2=1,解答:x=.

2.依題意得:,

∴當x>-且x≠0時,+x2在實數(shù)范圍內(nèi)沒有意義.

3.

4.B

5.a=5,b=-4

495069